Search results for " Terahertz"

showing 10 items of 13 documents

Solid-state-biased coherent detection of ultra-broadband terahertz pulses

2017

Significant progress in nonlinear and ultrafast optics has recently opened new and exciting opportunities for terahertz (THz) science and technology, which require the development of reliable THz sources, detectors, and supporting devices. In this work, we demonstrate the first solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation in a thin layer of ultraviolet fused silica. The proposed CMOS-compatible devices, which can be realized with standard microfabrication techniques, allow us to perform ultra-broadband detection with a high dynamic range by employing probe laser powers and bias v…

coherent detectionTA1501Nonlinear opticTerahertzFar infrared or terahertzFour-wave mixingUltrafast opticDevicePhysics::OpticsUltrafast laserSolid state detectorSettore ING-INF/01 - ElettronicaQC0350Optica
researchProduct

Terahertz spectroscopy for all-optical spintronic characterization of the spin-Hall-effect metals Pt, W and Cu80Ir20

2018

Identifying materials with an efficient spin-to-charge conversion is crucial for future spintronic applications. In this respect, the spin Hall effect is a central mechanism as it allows for the interconversion of spin and charge currents. Spintronic material research aims at maximizing its efficiency, quantified by the spin Hall angle and the spin-current relaxation length . We develop an all-optical contact-free method with large sample throughput that allows us to extract and . Employing terahertz spectroscopy and an analytical model, magnetic metallic heterostructures involving Pt, W and Cu80Ir20 are characterized in terms of their optical and spintronic properties. The validity of our …

Materials scienceAcoustics and Ultrasonics530 Physicsterahertz emission spectroscopyFOS: Physical sciences02 engineering and technology01 natural sciencesTransition metalHall effect0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)ultrafast spincaloritronics010306 general physicsSpectroscopyComputingMilieux_MISCELLANEOUSterahertz emission spectroscopy; terahertz transmission spectroscopy; ultrafast spintronics; ultrafast spincaloritronicsCondensed Matter - Materials ScienceSpintronicsCondensed Matter - Mesoscale and Nanoscale Physicsbusiness.industryRelaxation (NMR)Refractory metalsMaterials Science (cond-mat.mtrl-sci)621021001 nanoscience & nanotechnologyCondensed Matter Physics530 PhysikCondensed Matter::Mesoscopic Systems and Quantum Hall Effect3. Good healthSurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsTerahertz spectroscopy and technologyterahertz transmission spectroscopyultrafast spintronicsSpin Hall effect[PHYS.COND.CM-MS]Physics [physics]/Condensed Matter [cond-mat]/Materials Science [cond-mat.mtrl-sci]Optoelectronics0210 nano-technologybusiness
researchProduct

Analytical Model for wideband THz sources and detectors based on Optical Rectification and Electro-Optic Sampling

2013

An analytical model describing a laser based set-up for wideband THz generation and detection is presented. Particular attention is focused on the main broadband phenomena, which occur when THz radiations have to be handled.

Electro-optic samplingTerahertz sources Terahertz detectorsOptical rectificationTerahertz radiationSettore ING-INF/02 - Campi ElettromagneticiSettore ING-INF/01 - Elettronica
researchProduct

Gas-Phase Vibrational Spectroscopy of the Hydrocarbon Cations l-C3H+, HC3H+, and c-C3H2+: Structures, Isomers, and the Influence of Ne-Tagging

2019

We report the first gas-phase vibrational spectra of the hydrocarbon ions C3H+ and C3H2+. The ions were produced by electron impact ionization of allene. Vibrational spectra of the mass-selected ions tagged with Ne were recorded using infrared predissociation spectroscopy in a cryogenic ion trap instrument using the intense and widely tunable radiation of a free electron laser. Comparison of high-level quantum chemical calculations and resonant depletion measurements revealed that the C3H+ ion is exclusively formed in its most stable linear isomeric form, whereas two isomers were observed for C3H2+. Bands of the energetically favored cyclic c-C3H2+ are in excellent agreement with calculated…

FELIX Molecular Structure and Dynamics010304 chemical physicsInfraredAlleneAnharmonicityInfrared spectroscopyFELIX Infrared and Terahertz Spectroscopy010402 general chemistry01 natural sciencesMolecular physicsArticle0104 chemical sciencesIonchemistry.chemical_compoundchemistry0103 physical sciencesIon trapPhysical and Theoretical ChemistrySpectroscopyElectron ionization
researchProduct

Terahertz Spin‐to‐Charge Conversion by Interfacial Skew Scattering in Metallic Bilayers

2021

The efficient conversion of spin to charge transport and vice versa is of major relevance for the detection and generation of spin currents in spin‐based electronics. Interfaces of heterostructures are known to have a marked impact on this process. Here, terahertz (THz) emission spectroscopy is used to study ultrafast spin‐to‐charge‐current conversion (S2C) in about 50 prototypical F|N bilayers consisting of a ferromagnetic layer F (e.g., Ni81Fe19, Co, or Fe) and a nonmagnetic layer N with strong (Pt) or weak (Cu and Al) spin‐orbit coupling. Varying the structure of the F/N interface leads to a drastic change in the amplitude and even inversion of the polarity of the THz charge current. Rem…

spectroscopyMaterials sciencespin-to-charge conversion530 PhysicsTerahertz radiationterahertz emission spectroscopyterahertz emission02 engineering and technologyElectron010402 general chemistry5307. Clean energy01 natural sciencesGeneral Materials ScienceSpectroscopySpin-½Condensed matter physicsScatteringMechanical EngineeringCharge (physics)Heterojunction530 Physik021001 nanoscience & nanotechnology0104 chemical sciencesskew scatteringFerromagnetismMechanics of Materialsinterface; skew scattering; spin-to-charge conversion; terahertz emission spectroscopyinterface0210 nano-technologyAdvanced Materials
researchProduct

Implementation of signal-processing functionalities in the Terahertz frequency domain

2020

Signal-processing Terahertz
researchProduct

Affordable, ultra-broadband coherent detection of terahertz pulses via CMOS-compatible solid-state devices

2017

We demonstrate the first fully solid-state technique for the coherent detection of ultra-broadband THz pulses (0.1-10 THz), relying on the electric-field-induced second-harmonic generation attained in integrated CMOS-compatible devices.

Materials sciencebusiness.industryTerahertz radiationSpectral densitySecond-harmonic generationSettore ING-INF/02 - Campi Elettromagnetici02 engineering and technology021001 nanoscience & nanotechnologySettore ING-INF/01 - Elettronica01 natural sciencesElectromagnetic radiationTerahertz spectroscopy and technologyOpticsNonlinear optics Ultrafast optics Far infrared or terahertz Solid state detectorsElectric field0103 physical sciencesBroadbandOptoelectronicsHeterodyne detection010306 general physics0210 nano-technologybusinessConference on Lasers and Electro-Optics
researchProduct

Modulating the polarization of broadband terahertz pulses from a spintronic emitter at rates up to 10 kHz

2021

Reliable modulation of terahertz electromagnetic waveforms is important for many applications. Here, we rapidly modulate the direction of the electric field of linearly polarized terahertz electromagnetic pulses with 1–30 THz bandwidth by applying time-dependent magnetic fields to a spintronic terahertz emitter. Polarity modulation of the terahertz field with more than 99% contrast at a rate of 10 kHz is achieved using a harmonic magnetic field. By adding a static magnetic field, we modulate the direction of the terahertz field between angles of, for instance, −53° and 53° at kilohertz rates. We believe our approach makes spintronic terahertz emitters a promising source for low-noise modula…

Materials science530 PhysicsSpatial light modulatorsTerahertz radiationPhysics::OpticsLow-noise modulation spectroscopy02 engineering and technologyNonlinear optical crystals01 natural sciencesspintronic terahertz emittersElectric field5390103 physical sciencesElectromagnetic pulse010302 applied physics500 Naturwissenschaften und Mathematik::530 Physik::539 Moderne PhysikCondensed Matter::Otherbusiness.industryLinear polarizationNonlinear spectroscopyBroadband terahertz pulses530 Physik021001 nanoscience & nanotechnologyPolarization (waves)MagnetostaticsAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsMagnetic fieldModulationOptoelectronics0210 nano-technologybusinessModulation spectroscopyOptica
researchProduct

Antenna-coupled spintronic terahertz emitters driven by a 1550 nm femtosecond laser oscillator

2019

We demonstrate antenna-coupled spintronic terahertz (THz) emitters excited by 1550 nm, 90 fs laser pulses. Antennas are employed to optimize THz outcoupling and frequency coverage of ferromagnetic/nonmagnetic metallic spintronic structures. We directly compare the antenna-coupled devices to those without antennas. Using a 200 μm H-dipole antenna and an ErAs:InGaAs photoconductive receiver, we obtain a 2.42-fold larger THz peak-peak signal, a bandwidth of 4.5 THz, and an increase in the peak dynamic range (DNR) from 53 dB to 65 dB. A 25 μm slotline antenna offered 5 dB larger peak DNR and a bandwidth of 5 THz. For all measurements, we use a comparatively low laser power of 45 mW from a comme…

Materials sciencePhysics and Astronomy (miscellaneous)Terahertz radiation02 engineering and technology01 natural sciences530law.inventionlawantenna-coupled spintronic terahertz emitterslaser oscillator0103 physical sciencesLaser power scaling010302 applied physicsSpintronicsbusiness.industryDynamic rangePhotoconductivityBandwidth (signal processing)500 Naturwissenschaften und Mathematik::530 Physik::530 Physik021001 nanoscience & nanotechnologyLaserFemtosecondOptoelectronicsterahertz emitters0210 nano-technologybusiness
researchProduct

Spatial and spectral properties of small area THz generation for sub-wavelength microscopy

2010

A highly localized THz source is a promising candidate for sub-wavelength microscopy, due to its superior radiation power throughput with respect to others near-field techniques. Here, we report on the spatial and the spectral near-field properties of our highly localized THz source.

Materials sciencebusiness.industryTerahertz radiationSpectral propertiesPhysics::OpticsNonlinear opticsRadiationTerahertz sourcesSub wavelengthOpticsMicroscopyOptoelectronicsnonlinear optics terahertz spectroscopybusinessThroughput (business)Image resolution35th International Conference on Infrared, Millimeter, and Terahertz Waves
researchProduct